본문 바로가기
프로그래밍/Codility

[C#] FrogRiverOne

by 뽀도 2021. 1. 2.

[문제]

 

A small frog wants to get to the other side of a river. The frog is initially located on one bank of the river (position 0) and wants to get to the opposite bank (position X+1). Leaves fall from a tree onto the surface of the river.

You are given an array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in seconds.

The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X (that is, we want to find the earliest moment when all the positions from 1 to X are covered by leaves). You may assume that the speed of the current in the river is negligibly small, i.e. the leaves do not change their positions once they fall in the river.

For example, you are given integer X = 5 and array A such that:

A[0] = 1 A[1] = 3 A[2] = 1 A[3] = 4 A[4] = 2 A[5] = 3 A[6] = 5 A[7] = 4

In second 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.

Write a function:

class Solution { public int solution(int X, int[] A); }

that, given a non-empty array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.

If the frog is never able to jump to the other side of the river, the function should return −1.

For example, given X = 5 and array A such that:

A[0] = 1 A[1] = 3 A[2] = 1 A[3] = 4 A[4] = 2 A[5] = 3 A[6] = 5 A[7] = 4

the function should return 6, as explained above.

Write an efficient algorithm for the following assumptions:

  • N and X are integers within the range [1..100,000];

each element of array A is an integer within the range [1..X].


 

[설명]

개구리는 강을 건너기 위해 포지션 X까지의 모든 잎을 밟고 가야한다.

모든 잎을 밟고 갈 수 있는 A[K]를 구하면 된다..

 

[힌트]

중복 요소를 포함 하지 않는 컬렉션

 

[풀이]

더보기
using System;
using System.Collections.Generic;
using System.Linq;

// you can also use other imports, for example:
// using System.Collections.Generic;

// you can write to stdout for debugging purposes, e.g.
// Console.WriteLine("this is a debug message");

class Solution {
    public int solution(int X, int[] A) {
        // write your code in C# 6.0 with .NET 4.5 (Mono)

        var set = new HashSet<int>();

            for(int i = 0; i < A.Length; ++i)
            {
                if (set.Add(A[i]) == true)
                    set.Add(A[i]);

                if (set.Count() == X)
                    return i;
            }  
            
            return -1;

    }
}

 

 

 

 

 

반응형

'프로그래밍 > Codility' 카테고리의 다른 글

MaxCounters  (0) 2021.01.02
[C#] codility TapeEquilibrium 문제풀이2  (0) 2021.01.01
[c#] Codility - PermCheck  (0) 2019.09.03
[c#] codility - TapeEquilibrium - 좀 더 생가해보기.  (0) 2019.09.02
[c#] Codility - PermMissingElem  (0) 2019.09.01

댓글